

CMX Cable Markers Halogen free, flame-retardant Polyether based PUR

TECHNICAL DATA SHEET

Revision Number. 1.2 Last Edited 12. september 2023

Cable Markers in extruded from halogen free and flame retardant PUR (Thermoplastic Polyether-Polyurethane) material which is hydrolysis " No break down in water" and micro organism resistant. Its extremely strong with high tear strength, suitable for a variety of in and outdoor applications where durable mark permanence is de facto standard. The labels are fixed to the cable or wire using cable ties at both ends. The product is supplied as an all-in-one construction, where the extruded material also functions as the carrier. The markers are partially perforated for easy picking after printing and supplied on rolls for thermal transfer printing. Many colours available.

UV STABILITY DATA

Results of accelerated ageing testing are as a result of artficial lighting/ illumination in a laboratory. Duration test is 500 hours, which equals 10 years of exposure.

STANDARD COLORS

MATERIAL halogen free, flame retarded polyether based PUR.

OPERATING TEMPERATURE

-25°C up to +105°C (-13F to 176°F)

COMPLIANCES

Mark Permanence: SAE AS-5942. Ribbon : FTI-Y black

RESISTANCE TO SOLVENTS

MIL-STD-202G Test method 215 Ribbon : FTI-Y black

RECOMMENDED BLACK RIBBON FTI-Y

RECOMMENDED WHITE RIBBON FTI-HLD-CO

ALTERNATIVE BLACK RIBBON

FLAMMABILITY STANDARD Class V-0 - UL94 @3,0 mm Class V-2 - UL 94 @ 0,75mm Not flammable

UV STABILITY TEST

Test with UV lamp 340nm Light @ 60°C irradiation 0.76 W/m² Duration 500 hours Spray duration 15 min. Condensation 50°C Duration 3,45 hour. TEST with XENON (340nm) Light 65 ° c irradiation 0.50 W/m² Duration 1,42 hours Light + Spray duration 0.60 W/m² Duration 18 min.

STORAGE

Cool and dry in original packaging. Recommended temperature at +10°C to +25°C and 45-55% relative humidity.

APPLICATIONS

Developed to be used in normal Industry, Wind Power, Commercial, Construction, Electrical and Telecom installations, wire & cable bundling.

Ordring Info

PART NUMBER EXAMPLES

PART NUMBER	COLOUR	SIZE	TEXT AREA DIMENSION	MATERIAL	QTY	UOM
CMX-060x012-XX	XX	60x12mm	40x12mm	TPU	1000	Roll
CMX-075x015-XX	XX	75x15mm	55x15mm	TPU	1000	Roll
CMX-075x025-XX	XX	75x25mm	55x25mm	TPU	500	Roll
CMX-090x010-XX	XX	90x10mm	70x10mm	TPU	1000	Roll

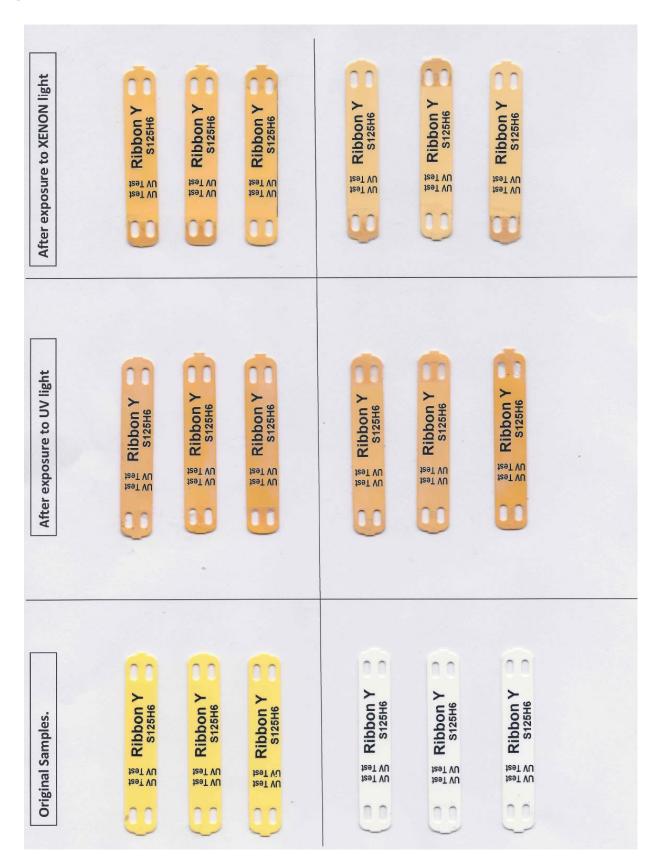
Product code

	CMX - 060 - 012 - XX
FAMILY CMX = All In One Construction	
WIDTH In mm	
HEIGHT In mm]
COLOR Yellow White Blue Black Red Lemon Yellow Ocean Blue Orange Signal Red Signal Green Blue Sky	

General Values for PUR Identification Products

PHYSICAL

PROPERTIES	TEST METHOD	TYPICAL VALUE	
Stress at 20 % strain	DIN 53504	13 MPa	
Stress at 100 % elongation	DIN 53504	19 MPa	
Stress at 300% elongation	DIN 53504	33 MPa	
Density	DIN 53479	1,27 g/cm ³	
Tensile Strength	DIN 53504	30 MPa	
Elongation @ break	DIN 53504	400 %	
Charpy notched impact strength, -30°C	DIN EN ISO 179	3 kj/m ²	
Charpy notched impact strength, 23°C	DIN EN ISO 179	50 kj/m ²	
Tensile Strength after storage in water at 80°C for 42 days	DIN 53504	20MPa	
Compression set at room temperature, 24h	DIN EN ISO 815	30%	
Compression set at 70°C, 24h	DIN EN ISO 815	45 %	
Tear Strength	DIN 53515	110 N/mm	
Abrasion resistance - loss	DIN 53516	30mm ³	
Shore hardnessloss	DIN 53505	58 Shore D	


THERMAL

PROPERTIES	TEST METHOD	TYPICAL VALUE	
Glass transition temperature, 10°C/min	ISO 11357-1/-2	-44°C	
Burning behaviour at 0.75 mm nom thickness	UL94	Class V-2	
Burning behavior at 3.0 mm thickness	UL94	Class V-0	
Oxygen Index	ISO 4589-1/-2	24%	

ENVIRONMENTAL - UV STABILITY

PROPERTIES	TEST METHOD	TYPICAL VALUE	
UV-A 340 nm 500 hours Light 60 ° irradiation 0.76 W/m ² power duration 8 hours - Spray duration 15 min. - Condensation 50 ° duration 3,45 hour.	Visual Inspection Mark Adherence	No creasing or cracking Good contrast and visibility	
PROPERTIES	TEST METHOD	TYPICAL VALUE	
TEST with XENON lamp, 500 hours XENON (340nm) - Light 65 ° c irradiation 0.50 W/m ² duration 1,42 hours - Light + Spray duration 0.60 W/m ² duration 18 min	Visual Inspection Mark Adherence	No creasing or cracking Good contrast and visibility	

CHEMICAL PROPERTIES

CHEMICAL RESISTANCE

SOLVENTS RESISTANCE

No degradation of the CMX TPU products occurs, however, according to the solvent class a variable degree of swelling and consequent reduction in tensile strength (after evaporation of the solvents, the tensile strength recovers approx. its original value).

Methanol should be considered more as a chemical reagent than as a solvent. TPU is soluble in some solvents. As test procedure, 5A test rods (DIN EN ISO 527-2) were immersed in the solvent for three weeks at 23° C, and tested for tensile strength are rounded values.

CODE	TEST FLUID	SWELLING	REDUCTION OF TENSILE STRENGTH %
Aliphatic Hydrocarbons	Pentan Cyclohexan Isooctan	10 22 7.5	20 10 none
	and cyclo-aliphatic hydrocarbons such as methane l, diesel oil and kerosine (although additives can pr		e,
Aromatic Hydrocarbons	Toulene	65	50
Other aromatic hydrocarbons such as benze	ene and xylene have a similar affect.		
Aliphatic Esters	Ethyl Acetate	70	75
Other short-chained esters such as butyl ace	etate and amyi acetate have a similar affect		
Aliphatic Ketones	Methyl Ethyl Ketone	130	90
Other short-chained aliphatic ketones such	as acetone and methyl isobutyl ketone = MIBK hav	e a similar affect.	
Aliphatic Halogenated Hydrocarbons, 1 C-atom	MethylEthyle Chloride Chloroform Tetrachloroethylene	190 75	95 Practically dissolved 54
1 C-atom and higher	Trichloroethane*		
*Other aliphatic halogenated hydrocarbons	with 2 C-atoms and higher have a similar affect.		
Aromatic Halogenated Hydrocarbons	Chlorobenzene	110	60
Other aromatic halogenated hydrocarbons	nave a similar affect.		
ASTM-Oils acc. to ASTM D 471-06**	IRM 901 at 100 °C 500 h IRM 901 at 100 °C 1000 h IRM 902 at 100 °C 500 h IRM 902 at 100 °C 1000 h IRM 903 at 100 °C 500 h	1 1 9 10 18	6 14 4 5 8
	IRM 903 at 100 °C 1000 h	20	° 30
Agents Dissolving TPU	Tetrahydrofurane Dimethyl Formamide (DMF)	dissolved dissolved	dissolved dissolved
	Dimethyl Acetamide N-Methyl Pyrrolidone (NMP) Dimethyl Sulphoxide (DMSO) Pyridine	dissolved dissolved dissolved dissolved	dissolved dissolved dissolved dissolved

CHEMICAL PROPERTIES

CHEMICAL RESISTANCE

SOLVENTS RESISTANCE

CODE	TEST FLUID	SWELLING	REDUCTION OF TENSILE STRENGTH %
Alcohols and Fuels	Methanol	28	6
	Ethanol	33	14
	lso-Propanol	30	4
	Benzyl Alcohol	not measureable	partly dissolved
	Ethylen Glycol	4	15
	Glycerine	none	none
FAM Test Fluids acc. to DIN 51 604*	Test Fluid A	67	60
	Test Fluid B	68	74
	Test Fluid C	43	70
Diesel Fuel	Diesel Fuel	11	none
Biodiesel Fuel RME @ 60°C	Biodiesel Fuel	27	21
[Fuel A = Iso-Octane	7.5	2020
Fuel Types ASTM D 471	Fuel B = Iso-Octane Touene 70% / 30%	25	none 36
	Fuel C=lso-Octane Toluene 50% / 50%	38	44
	Fuel D=lso-Octane Toluene 60% / 40%	31	44

* DIN 51 604, 03.1984, is the standard, etablished by FAM to assess the resistance of plastic materials to automotive fuels.

** The IRM reference oils are mineral oils with different paraffin and aromatics contents. The formerly used ASTM oils 1, 2 and 3 were replaced by the IRM oils 1, 2 and 3 owing to health risks, and are no longer available. The IRM oils 1, 2 and 3 are very similar in terms of their characteristics, but not identical.

(FAM = Fachausschuß Mineral- und Brennstoffnormung-Professional committee for standardization of fuel stuffs)

(ASTM = American Society for Testing and Materials)

Test fluid A consists of: 50.0 % by volume toluene 30.0 % by volume iso-octane 15.0 % by volume di-isobutylene 5.0 % by volume ethanol

Test fluid B consists of: 42.0 % by volume toluene 25.5 % by volume iso-octane 13.0 % by volume di-isobutylene 15.0 % by volume methanol 4.0 % by volume ethanol 0.5 % by volume water

Test fluid C consists of: 20.0 % by volume toluene 12.0 % by volume iso-octane 6.0 % by volume di-isobutylene 58.0 % by volume methanol 2.0 % by volume ethanol 2.0 % by volume water