

# **CMX-D Diamond Shape Cable Marker**

# Halogen Free, Flame-retardant Polyether based TPU

### **TECHNICAL DATA SHEET**

Revision Number. 1 Last Edited 10. januar 2024







Diamond shape Cable Markers in extruded from halogen free and flame retardant PUR (Thermoplastic Polyether-Polyurethane) material which is hydrolysis " No break down in water" and micro organism resistant. Its extremely strong with high tear strength, suitable for a variety of in and outdoor applications where durable mark permanence is de facto standard. The labels are fixed to the cable or wire using cable ties at both ends. The product is supplied as an all-in-one construction, where the extruded material also functions as the carrier. The markers are partially perforated for easy picking after printing and supplied on rolls for thermal transfer printing. Many colours available.

**UV STABILITY DATA** 

Results of accelerated ageing testing are as a result of artficial lighting/ illumination in a laboratory. Duration test is 500 hours, which equals 10 years of exposure.

# Industry















### STANDARD COLORS



OTHER COLORS



#### **MATERIAL**

halogen free, flame retarded polyether based TPU.

### **OPERATING TEMPERATURE**

-25°C up to +105°C (-13F to 176°F)

# **COMPLIANCES**

Mark Permanence: SAE AS-5942. Ribbon: FTI-Y black

### **RESISTANCE TO SOLVENTS**

MIL-STD-202G Test method 215 Ribbon: FTI-Y black

RECOMMENDED BLACK RIBBON

RECOMMENDED WHITE RIBBON FTI-HLD-CO

## FLAMMABILITY STANDARD

Class V-0 - UL94 Not flammable

## **UV STABILITY TEST**

Test with UV lamp 340nm Light @ 60°C irradiation 0.76 W/m<sup>2</sup> **Duration 8 hours** Spray duration 15 min. Condensation 50°C Duration 3,45 hour.

TEST with XENON (340nm) Light 65 ° c irradiation 0.50 W/m<sup>2</sup> Duration 1,42 hours Light + Spray duration 0.60 W/m<sup>2</sup> Duration 18 min.

#### STORAGE

Cool and dry in original packaging. Recommended temperature at +10°C to +25°C and 45-55% relative humidity.

## **APPLICATIONS**

Developed to be used in normal Industry, Wind Power, Commercial, Construction, Electrical and Telecom installations, wire & cable bundling.









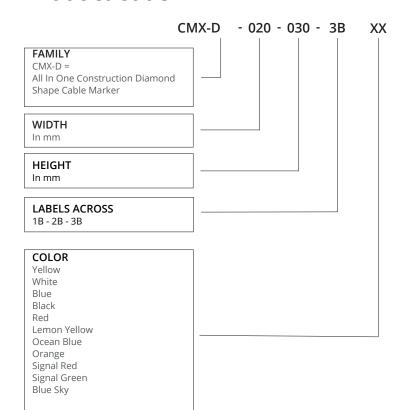


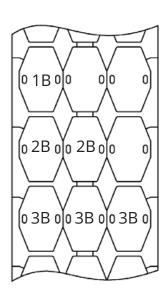


**Flectrical** 



This information and data is believed to be accurate and reliable. Although the information and recommendations set forth herein are presented in good faith and believed to be correct as of this date, Link Solutions makes no representations as to the completeness or accuracy thereof. We place at your disposal the technical information necessary for the correct use of our products. As conditions and methods of use are beyond our control, that the person receiving the same will make their own determination as to the suitability for their purpose. We reserve the right to modify characteristics with the aim of improving the product and adapting it to the requirements of the market.





# Ordering Info

# PART NUMBER EXAMPLES

| PART NUMBER      | COLOUR | SIZE    | TEXT AREA DIMENSION | MATERIAL | QTY  | иом  |
|------------------|--------|---------|---------------------|----------|------|------|
| CMX-D-020x030-1B | XX     | 20x30mm | 30x10mm             | TPU      | 1000 | Roll |
| CMX-D-020x030-2B | XX     | 20x30mm | 30x10mm             | TPU      | 1000 | Roll |
| CMX-D-020x030-3B | XX     | 20x30mm | 30x10mm             | TPU      | 1000 | Roll |

# Product code







# General Values for PUR Identification Products

# **PHYSICAL**

| PROPERTIES                                                  | TEST METHOD    | TYPICAL VALUE          |
|-------------------------------------------------------------|----------------|------------------------|
| Stress at 20 % strain                                       | DIN 53504      | 13 MPa                 |
| Stress at 100 % elongation                                  | DIN 53504      | 19 MPa                 |
| Stress at 300% elongation                                   | DIN 53504      | 33 MPa                 |
| Density                                                     | DIN 53479      | 1,27 g/cm <sup>3</sup> |
| Tensile Strength                                            | DIN 53504      | 30 MPa                 |
| Elongation @ break                                          | DIN 53504      | 400 %                  |
| Charpy notched impact strength, -30°C                       | DIN EN ISO 179 | 3 kj/m²                |
| Charpy notched impact strength, 23°C                        | DIN EN ISO 179 | 50 kj/m²               |
| Tensile Strength after storage in water at 80°C for 42 days | DIN 53504      | 20MPa                  |
| Compression set at room temperature, 24h                    | DIN EN ISO 815 | 30%                    |
| Compression set at 70°C, 24h                                | DIN EN ISO 815 | 45 %                   |

# **THERMAL**

| PROPERTIES                                 | TEST METHOD    | TYPICAL VALUE |
|--------------------------------------------|----------------|---------------|
| Glass transition temperature, 10°C/min     | ISO 11357-1/-2 | -44°C         |
| Burning behaviour at 0.75 mm nom thickness | UL94           | Class V-2     |
| Burning behavior at 3.0 mm thickness       | UL94           | Class V-0     |
| Oxygen Index                               | ISO 4589-1/-2  | 24%           |

## **ENVIRONMENTAL**

| PROPERTIES                                                                     | TEST METHOD       | TYPICAL VALUE                |
|--------------------------------------------------------------------------------|-------------------|------------------------------|
| UV-A 340 nm 1000 hours Light 60 ° irradiation 0.76 W/m² power                  | Visual Inspection | No creasing or cracking      |
| duration 8 hours - Spray duration 15 min Condensation 50 ° duration 3,45 hour. | Mark Adherence    | Good contrast and visibility |

| PROPERTIES                                                                                                                                   | TEST METHOD       | TYPICAL VALUE                |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|
| TEST with XENON lamp,<br>XENON (340nm)                                                                                                       | Visual Inspection | No creasing or cracking      |
| - Light 65 ° c irradiation 0.50 W/m <sup>2</sup><br>duration 1,42 hours<br>- Light + Spray duration 0.60 W/m <sup>2</sup><br>duration 18 min | Mark Adherence    | Good contrast and visibility |



# **CHEMICAL PROPERTIES**

## **CHEMICAL RESISTANCE**

#### **SOLVENTS RESISTANCE**

No degradation of the CMX-D TPU products occurs, however, according to the solvent class a variable degree of swelling and

consequent reduction in tensile strength (after evaporation of the solvents, the tensile strength recovers approx. its original value).

Methanol should be considered more as a chemical reagent than as a solvent. TPU is soluble in some solvents. As test procedure, 5A test rods (DIN EN ISO 527-2) were immersed in the solvent for three weeks at 23° C, and tested for tensile strength are rounded values.

| CODE                                                                                                                                                                                                                                       | TEST FLUID                                                                                                                                           | SWELLING                                                                   | REDUCTION OF TENSILE STRENGTH %                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Aliphatic<br>Hydrocarbons                                                                                                                                                                                                                  | Pentan<br>Cyclohexan<br>Isooctan                                                                                                                     | 10<br>22<br>7.5                                                            | 20<br>10<br>none                                                           |  |
| CMX-D PUR behave similarly in other aliphatic and cyclo-aliphatic hydrocarbons such as methane, ethane, propane, butane, hexane, octane, petroleum ether, paraffin oil, diesel oil and kerosine (although additives can present problems). |                                                                                                                                                      |                                                                            |                                                                            |  |
| Aromatic Hydrocarbons                                                                                                                                                                                                                      | Toulene                                                                                                                                              | 65                                                                         | 50                                                                         |  |
| Other aromatic hydrocarbons such as benzer                                                                                                                                                                                                 | ne and xylene have a similar affect.                                                                                                                 |                                                                            |                                                                            |  |
| Aliphatic Esters                                                                                                                                                                                                                           | Ethyl Acetate                                                                                                                                        | 70                                                                         | 75                                                                         |  |
| Other short-chained esters such as butyl acet                                                                                                                                                                                              | ate and amyi acetate have a similar affect                                                                                                           |                                                                            |                                                                            |  |
| Aliphatic Ketones                                                                                                                                                                                                                          | Methyl Ethyl Ketone                                                                                                                                  | 130                                                                        | 90                                                                         |  |
| Other short-chained aliphatic ketones such as                                                                                                                                                                                              | s acetone and methyl isobutyl ketone = MIBK have                                                                                                     | a similar affect.                                                          |                                                                            |  |
| Aliphatic<br>Halogenated<br>Hydrocarbons,<br>1 C-atom                                                                                                                                                                                      | MethylEthyle Chloride<br>Chloroform<br>Tetrachloroethylene                                                                                           | 190<br>75                                                                  | 95<br>Practically dissolved<br>54                                          |  |
| 1 C-atom and higher                                                                                                                                                                                                                        | Trichloroethane*                                                                                                                                     |                                                                            |                                                                            |  |
| *Other aliphatic halogenated hydrocarbons v                                                                                                                                                                                                | vith 2 C-atoms and higher have a similar affect.                                                                                                     |                                                                            |                                                                            |  |
| Aromatic<br>Halogenated<br>Hydrocarbons                                                                                                                                                                                                    | Chlorobenzene                                                                                                                                        | 110                                                                        | 60                                                                         |  |
| Other aromatic halogenated hydrocarbons ha                                                                                                                                                                                                 | ave a similar affect.                                                                                                                                |                                                                            |                                                                            |  |
| ASTM-Oils<br>acc. to ASTM<br>D 471-06**                                                                                                                                                                                                    | IRM 901 at 100 °C 500 h IRM 901 at 100 °C 1000 h  IRM 902 at 100 °C 500 h IRM 902 at 100 °C 1000 h  IRM 903 at 100 °C 500 h IRM 903 at 100 °C 1000 h | 1<br>1<br>9<br>10<br>18<br>20                                              | 6<br>14<br>4<br>5<br>8<br>30                                               |  |
| Agents Dissolving TPU                                                                                                                                                                                                                      | Tetrahydrofurane Dimethyl Formamide (DMF)  Dimethyl Acetamide N-Methyl Pyrrolidone (NMP)  Dimethyl Sulphoxide (DMSO) Pyridine                        | dissolved<br>dissolved<br>dissolved<br>dissolved<br>dissolved<br>dissolved | dissolved<br>dissolved<br>dissolved<br>dissolved<br>dissolved<br>dissolved |  |



# **CHEMICAL PROPERTIES**

### **CHEMICAL RESISTANCE**

#### **SOLVENTS RESISTANCE**

| CODE                                     | TEST FLUID                                   | SWELLING              | REDUCTION OF<br>TENSILE STRENGTH % |
|------------------------------------------|----------------------------------------------|-----------------------|------------------------------------|
| Alcohols and Fuels                       | Methanol<br>Ethanol                          | 28<br>33              | 6<br>14                            |
|                                          | Iso-Propanol<br>Benzyl Alcohol               | 30<br>not measureable | 4<br>partly dissolved              |
|                                          | Ethylen Glycol<br>Glycerine                  | 4<br>none             | 15<br>none                         |
| FAM Test Fluids acc. to DIN 51 604*      | Test Fluid A<br>Test Fluid B<br>Test Fluid C | 67<br>68<br>43        | 60<br>74<br>70                     |
| Diesel Fuel<br>Biodiesel Fuel RME @ 60°C | Diesel Fuel<br>Biodiesel Fuel                | 11<br>27              | none<br>21                         |
|                                          |                                              | I                     | · ·                                |
|                                          | Fuel A = Iso-Octane                          | 7.5                   | none                               |
| Fuel Types ASTM D 471                    | Fuel B = Iso-Octane<br>Touene 70% / 30%      | 25                    | 36                                 |
|                                          | Fuel C=lso-Octane<br>Toluene 50% / 50%       | 38                    | 44                                 |
|                                          | Fuel D=lso-Octane<br>Toluene 60% / 40%       | 31                    | 44                                 |

<sup>\*</sup> DIN 51 604, 03.1984, is the standard, etablished by FAM to assess the resistance of plastic materials to automotive fuels.

(FAM = Fachausschuß Mineral- und Brennstoffnormung-Professional committee for standardization of fuel stuffs)

(ASTM = American Society for Testing and Materials)

Test fluid A consists of: 50.0 % by volume toluene 30.0 % by volume iso-octane 15.0 % by volume di-isobutylene 5.0 % by volume ethanol

Test fluid B consists of:
42.0 % by volume toluene
25.5 % by volume iso-octane
13.0 % by volume di-isobutylene
15.0 % by volume methanol
4.0 % by volume ethanol
0.5 % by volume water

Test fluid C consists of:
20.0 % by volume toluene
12.0 % by volume iso-octane
6.0 % by volume di-isobutylene
58.0 % by volume methanol
2.0 % by volume ethanol
2.0 % by volume water

<sup>\*\*</sup> The IRM reference oils are mineral oils with different paraffin and aromatics contents. The formerly used ASTM oils 1, 2 and 3 were replaced by the IRM oils 1, 2 and 3 owing to health risks, and are no longer available. The IRM oils 1, 2 and 3 are very similar in terms of their characteristics, but not identical.